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An interpolative method for determining many-particle integrals needed in quantumchemical 
2h (h= 0, 1, 2, ..., calculations is proposed. The basic idea is that integrals of the form S dr1 ~ drj ~(ri, rs) r~j 

r~ and rj are coordinates of the I-th and the J-th particle, respectively, r~j is their distance and Q(r~, rs) 
is a charge distribution) can be easily calculated and can be used to determine integrals ~ dr1Sdrjo(rl, 

2h-i by interpolation (or for h= 0 by extrapolation). By making use of the identity A1Aj~f  "~ r j )  r l j  
= (h + 2) (h + 3) (h + 4) (h + 5) ~j (where A is the Laplacian operator) the extrapolation can be replaced 
by interpolation definitely improving the accuracy. As a probably most natural tool for interpolation 
the use of an auxiliary quantity called the distance function is discussed. The method can be consider- 
ably generalized (e.g. to many-particle integrals). Numerical results obtained by applying a preliminary 
form of the method to two-center integrals resulting from a Slater-type base are given. 
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1. Introduction 

In quantumchemica l  calculations based on variat ional  or perturbative 
techniques a high number  of  integrals is needed the integrands of which depend 
on the coordinates  of  the particles making up the molecular  system. In the case 
of all but  the very simplest systems it is the difficulties of  integration and not  the 
physical considerat ions that  fundamental ly  influence the choice of the analytical 
form of the variat ional  wave functions. 

The aim of  this paper  is to outline the basic principles of  an integration 
technique which may  be helpful in overcoming some of the difficulties of integra- 
tion. The new method  is fundamental ly  different from the s tandard techniques 
and it has the attractive feature that  it p robably  works better in the case of integrals 
that  result f rom variat ional  wave functions involving terms explicitly depending 
on the distances of the particles than in the case of  integrals resulting from self- 
consistent-field or configurat ion interaction wave functions. 

The method,  as presented here, is far f rom having reached its final stage, and 
must  undergo similar sophisticated refinements both  in its a lgori thm as in pro- 
gramming techniques as the s tandard  methods  did. 
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2. The Basic Principles of the Method 

Let us consider a molecular system that consists of N particles. The coordinates 
of the I-th particle in a "global" rectangular coordinate system common for all 
particles are {x~, yt, zx} = r~. The integrals emerging in quantumchemical calcula- 
tions have the forms 

H K = ~ dr~ OK(rX) f (rlA) (2.1) 

IKL = ~ dr I ~ dr~ OK(ri) OL(rj) f (rH) (2.2) 

Here o(r) denotes some function of the coordinates of the particle and is briefly 
referred to as the charge distribution of the particle, rta is the distance of the I-th 
particle from some ftxed point A, rfj is the distance between the I-th and the J-th 
particle and f(r) is some function of r, in most cases a power of r: r -  1, to, r + 1 . . . . .  

For simplicity only integrals depending on the coordinates of not more than 
two particles will be considered. It will also be assumed that the charge distribu- 
tions are a product of two orbitals which may be Slater-type orbitals 

XNx yNy ZNz RNR exp (-- CR) (2.3) 
or Boys-type orbitals 

X Nx Y N r Z N z R  2Nr~ e x p ( - C R 2 ) .  (2.4) 

Here X, Y, Z denote coordinates of arbitrary "local" rectangular coordinate 
systems which may have different centers and different orientation, Nx, IVy, Nz, 
and N g aremon-negative integers, C is a positive real and R 2 = X 2 + y2 _1_ Z 2. 
A generalization of the method to more complicated cases is in principle straight- 
forward although in practice technical difficulties may emerge. Some hint for 
possible generalizations will be given. It will prove advantageous to use products 
of powers of X, Y, Z to describe the angular dependence of the orbitals instead 
of spherical harmonics. 

It will be assumed that the calculation of the one-particle integrals (2.1) is 
solved and we must concentrate on the two-particle integrals (2.2). 

Let us define the auxiliary one-particle integrals 

(9 (K, M~, My, M~, Mr) = S dr 0r(r) x ~t~ yM, zM~ r2Mr, (2.5) 

where r 2 = x 2 + y2 + z 2. In principle the (9-s can be calculated in closed analytical 
form (although this may not be the best way for calculating them in practice). 
This has the consequence that for f (r/j) -- r ~ r2H, r4xs, �9 �9 �9 the two-particle integrals 
(2.2) can also be calculated. By r2j = rx2 + r j2 2(xixj + YIYJ + zjzj) we obtain for 
n = 0 ,  1,2,...  

2n I~L(2n) = Sdr,~drsor(ri) oL(rs) rta 

= ~ ( - 2 ) ' ( ~ ) ~  ( !  ~" (J) "~' (nk -1  (2.6) 
/ = 0  i = 0  j = 0  k=O 

• ( 9 ( K , j , i - j , l - i , n - l - k ) ( 9 ( L , j , i - j , l - i , k ) .  

We disregard for a while the problems connected with the calculation of the 
C-s. If the O-s are given, the idea may emerge to calculate the two-particle integrals 
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with r~y + 1, rxj+ 3,... by interpolating between, and the integrals with ru  1 by extra- 
polating from the integrals with r~ rZu, . . . .  Essentially this is the basic idea of the 
present method. 

Before considering the problem of how to interpolate it will be shown that 
without loss of generality the calculation of the integrals with rxs-t, ri J+ ~, can 
always be done by interpolation. 

Let us make use of the identity 

~ y  = A I Zl j ~ 2  4/(( h + 2) (h + 3) (h + 4) (h + 5)), (2.7) 

where A = ~2/~x2 + ~2/c3y2 + ~2/0z2. Integrating by parts we obtain 

IKL(h) = I dr xl dr sQK(r i) QL(r s) ~s  
(2.8) 

= fdriSdrjA,OK(rl)  Ay~or(rj) ~]4/((h + 2) (h + 3)(h + 4)(h + 5)). 

Consequently instead of calculating the integrals IrL(--1) we can calculate 
similar integrals with r]j 3 but with charge distribution A0(r) instead of Q(r). 
The corresponding auxiliary integrals with .o .2 .~ r i j  , r l j  , r l j  , . . .  can be calculated 
without additional effort by reverting (2.8) giving 

(2.9) 
(2h - 2) ( 2 h -  1) (2h + O) (2h + 1)Sdr, Sdr, o,,(r,) eL(r j) 2 h - ,  : r l j  

where the right-hand side of (2.9) vanishes for h = 0, 1. 
This procedure will be referred to as the pre-manipulation of the (two-particle) 

integrals. 
Summarizing: In order to calculate the integrals IKL(--1), I~:L(+ 1),... we 

a) calculate the auxiliary two-particle integrals 

2h (2.10) TKL(2h) = ~ dr , S dr yOKL(r ,, r y) r ,y 

OKL(r l, r j )  ~- d i o K ( r  i) A aOL(r s) (2.11) 

by (2.9) and (2.6), b) calulate the integrals TKL(2h + 3) (h = 0, 1,...) by interpolating 
between the integrals TKL(2h), and c) calulate the integrals IKL(h) (h = - 1, + 1,...) 
by (2.8). 

At this point three brief remarks must be made. 
1) The pre-manipulation is by no means an identical re-formulation of the 

problem. This can be seen both from the fact that by pre-manipulation we obtain 
two additional auxiliary two-electron integrals [namely TKL(0) and TKL(2)] and 
from the numerical experience. 

2) If the wave functions contain terms explicitly depending on the distance 
of two particles and the nuclei are kept fixed the charge distributions 0~:L(r~, rs) 
defined in (2.tl) may contain Dirac-delta-function terms located at the nuclei. 
(This is an example of charge distributions more general than those defined at the 
beginningofthis section.) The emerging of Dirac-delta-terms causes no difficulties 
of principle but in practice more sophisticated interpolation procedures are needed 
(cf. Remark 3)). 

3) It is an obvious idea to repeat the pre-manipulation in order to increase its 
benefits. No difficulties of principle prevent us from doing it, but if the charge 
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distributions o(r) involve is or 2s Slater-type orbitals Dirac-delta-function terms 
appear at the centers of these orbitals. This has the effect, that the behaviour of 
the manipulated charge distributions becomes fundamentally different from that 
of the non-manipulated ones and this drastically changes the interpolation 
procedure. The numerical experience indicates that if the interpolation procedure 
is adequately chosen the second pre-manipulation generally improves the results, 
but if the results become inaccurate because of an unskillful way of interpolation, 
the second pre-manipulation causes an earlier breakdown of the approximation. 

We turn now to the problem of how to interpolate. 
The trivial idea of interpolating by polynomials or similar simple functions 

gave unstable results the accuracy of which strongly depended on the actual 
integral. Although this possibility can not be excluded for once and ever, at present 
it does not appear to be the best choice. 

Probably the most natural way of interpolating is provided by an auxiliary 
quantity referred to as the distance function DKL(rIj) belonging to the charge 
distribution OKL(rI, r j). 

Let us introduce new variables of integration in 

T~L(h) = S dr ~ ~ dr s QKL(r l, r j) r~l J . (2.12) 

Be one variable the distance r1j and five other independent variables which need 
not be specified in detail and will be denoted by ,/~j. As in our case the integral 
TrL(h ) is absolutely convergent we can write 

TKL(h ) = S dr l j  [rZj ~ dqH trKL(rld, qH)] ~/J (2.13) 
o 

where aKL(r,j, qH) denotes the charge distribution ~KL(r,, r j) expressed as a 
function of the new variables. We define the distance function DKL(rtj) belonging 
to the charge distribution r rs) by 

DKL(rlj) = rZs ~ dqlj aKL(rlj, qH) . (2.14) 

Thus for any function f(rH) for which an integral analogous to (2.13) is absolutely 
convergent we have 

of)  

TKL(f) = ~ drls DrL(rls) f (rij) (2.15) 
o 

(the notation is obvious). 
If the distance function is known, any integral satisfying the above conditions 

can be calculated at worst by a one-dimensional numerical quadrature. 
The Eq. (2.15) will be considered as the basic equation of the method of distance 

functions. Our aim will be to determine approximations to the distance functions 
belonging to the emerging charge distributions. 

In order to solve this task we combine three sources of information. 
1) Starting from the definition Eq. (2.14) of the distance function and taking 

into account only qualitative features of the charge distribution the following 
conclusions can be drawn. 

The distance function and at least its first derivative are continuous functions 
of rxj. Higher derivatives may have discontinuities at values of rrj equal to the 
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distances of the centers of the orbitals making up the charge distribution. Thus 
the distance functions are fairly smooth functions. 

At r/s-~ 0 the distance functions vanish at least in the same order as r~j. At 
r/j--* oe the distance functions vanish more rapidly than any negative power of r/a. 

2) If we substitute explicit expressions in the place of the charge distributions 
in some special cases the explicit form of the distance function can be determined 
from (2.14). The cases in which we succeeded are: 

2.1) All orbitals are Slater-type orbitals centered at the same point (one-center 
Slater integrals). The result is: 

Be C / a n d  Cj the sum of the orbital exponents associated with the orbitals 
occupied by the I-th and the J-th particle, respectively. Then for C / =  Cj 

i + 2  DKL(r/s)= airls exp( - -arH) ,  (2.16) 
and for C I # C j  i= 0 

tlI nj  

DKL(rlj) = Z ~i'#)'i+l"/s exp(-a~/)rlJ)+ ~ '~i'~(J)~'i+l'/J exp(-a(J)r /s) ,  (2.17) 
i=0  i=0  

where a = CI = Cs, a a) = C/, a ~J) = C j, n is the sum of the exponents Nx, Ny, Nz, NR 
of the Slater-type orbitals making up the charge distribution, n / a n d  nj denotes 
the sum of the N-exponents associated with the I-th and the J-th particle, respec- 
tively, and a(oI)= - a ( J  ). 

2.2) Two-center Coulomb and hybrid integrals based on Slater-type orbitals. 
If the distance of the two centers is R, the result is similar to that of 2.1) for rlj > R, 
and involves additional terms with exp ( + a r/j) and exp (+ a a) rij), exp (+ a a) r/s ) 
for r/s < R. 

2.3) All orbitals making up the charge distribution are Boys-type orbitals. 
The result can be expressed in terms of a special set of "elementary functions" but 
it is a very complicated expression and we have failed to bring it to a practically 
useful form. 

The results 2.1)-2.3) can be used for obtaining a more definite picture of the 
possible analytical form of the distance function. 

In all the cases 2.1)-2.3) the integral (2.14) has been evaluated by using polar 
coordinates for both particles, the origin of the coordinate system for Particle I 
being at the center of an orbital, the origin of the coordinate system for particle J 
being at the actual position of Particle I. 

3) From more or less qualitative considerations similar to those described in 
1)-2) we can choose a variational function DKL(ris;ao, a l , . . . , a , )  in order to 
approximate to the distance function DrL(r/j ). The variational parameters a0, 
al, ..., a, can be determined from the criterion that for h =  0, 1, ..., n 

S drHDKL(rH, ao, a 1 . . . . .  a,) r/~ff = TrL(2h ) (2.18) 
0 

where the integrals TKL(2h) are assumed to be known. Having determined the 
parameters a0, al . . . . .  a, we have for any function f (r /s)  for which the relevant 
integrals are absolutely convergent 

TKL(f) ~ ~ drijDKL(rlj; ao, a 1, . . . ,  a,) f (r/s) . (2.19) 
0 
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This procedure is justified by the fact that by Mtintz's theorem a function 
satisfying the conditions for the distance function is uniquely determined by its 
non-negative even moments. 

Before proceeding let us briefly summarize the critical points of the method 
of distance functions. 

a) The determination of the auxiliary two-particle integrals TrL(2h). This 
appears to be no serious problem and can with a high probability be satisfactorily 
solved by a careful elaboration of existing ideas (cf. Section 3). In any case the 
number of auxiliary one-particle integrals entering (2.6) is proportional to the 
number of different one-particle charge distributions and thus increases only 
with the square of the number of basic functions. It appears improbable that a 
much better expression than (2.6) can be found for the determination of the 
TKL(2h ) - s. 

b) The determination of the analytical form of the variational distance func- 
tions. In this context the choice proposed in Section 4 - although it gives fairly 
good results in many cases - is probably far from the best one. This appears to be 
the problem where the most important developments can be expected and the 
present solution must be considered as a preliminary one. 

c) The solving of the Eqs. (2.18). At this point the results presented in Section 3 
appear to give a solution sufficiently simple to justify the assumption that this 
problem will not cause major difficulties. 

d) The problem of error estimates. For the moment only qualitative error 
estimates of the character of stability tests could be found so that this problem 
must be considered as open. 

e) In order to increase the fate of convergence of the method of distance 
functions it is often advantageous to apply also auxiliary two-particle integrals 
other than the TKL(2h)- s. The simplest possibility is to use as auxiliary two- 
particle functions f ( r H ) =  c~(3)(rw) and f ( r l s  ) = Ai(~(3)(rll), where c5 ~3) denotes the 
three-dimensional Dirac-delta-function. If these functions are substituted into 
the integrals (2.2) the pre-manipulated integrals can be easily obtained by the 
identity A ir[s 1 = - 4n 6(3)(ris), giving 

TKL ( q- 1) = - -  87~ ~ dr QK(r) QL(r) , ( 2 . 20 )  

TKL(-- 1)= --4rc~drpK(r ) ACL(r). (2.21) 

In any case for multi-center integrals the calculation of TKL( + 1) and TKL(-- 1) may 
be a harder task than the calculation of TKL(2h). 

3. Selected Technical Problems 

This section deals with two problems: the calculation of the auxiliary one- 
electron integrals (2.5) and the solving of the set of Eq. (2.18). 

l) In the one- and two-center case the calculation of the integrals (2.5) is a 
routine task. In multi-center problems difficulties emerge however from the fact, 
that the local coordinate systems in which the orbitals are given and the global 
coordinate system {x, y, z} have in general different orientations and different 
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origins. It is not evident that the best idea is to reduce the multi-center case to a 
linear combination of one- or two-center problems by appropriate rotations and 
translations of the coordinates. 

Instead the following way appears to be helpful, at least for a pure Slater-type 
base. Let us introduce two-center elliptical coordinates #x, vi, q~i with focuses at 
the points defined by the centers of the orbitals making up the one-particle charge 
distribution of particle I. (The same applies to particle J.) In principle, the integrals 
(2.5) are a voluminous linear combination of integrals of the type 

+t 2~ 
dlh dvI S d~~ sinPq)I c~ v} exp(--~f#I) exp(--fllv~), (3.1) 

1 - 1  0 

where p + q + r + s does not exceed M x + My + M z + M R + 2 plus the sum of the 
N-exponents of the orbitals making up the charge distribution of Particle I. Now 
for such integrals there exists a Gaussian-type numerical quadrature which is 
exact for every integral for which p + q + r + s is less or equal to the value in (3.1). 
In addition, by introducing the new variable of integration 2i = e~(/t i-  1) for 
which the bounds are 0 <  2i < oo the meshpoints and weight factors of this 
quadrature are independent of c~i and thus can be calculated and stored for once 
and ever. (The same is naturally true for the q~rintegral, where the weight factors 
are equal and the meshpoints are equidistant.) The set of meshpoints and weight 
factors must thus be generated only for the vi-integral, and for this purpose rapid 
algorithms are available which are not sensitive to round-off errors. 

As such a numerical quadrature is exact for any linear combination of integrals 
of the type (3.1) for which p + q + r + s does not exceed the order of the quadrature, 
specially such a numerical quadrature is exact for the auxiliary one-electron 
integral (2.5), without making necessary to calculate the linear combination 
coefficients explicitly. 

The calculation of the values of the integrand of the auxiliary one-particle 
integrals (2.5) at the points needed by the quadrature is a relatively easy task, as it 
requires only the rotation and translation of one coordinate and not of products 
of (often high) powers of different coordinates. 

There is one question that is not clear at present. Namely the calculation of 
the one-particle auxiliary integrals needed for calculating TKL(2h)- s with dif- 
ferent h - s requires Gaussian quadratures of different minimum degrees. Naturally 
we can calculate all integrals with the quadrature of the highest degree, but this 
means that we calculate at an unnecessary high number of meshpoints at lower 
h - s. On the other hand if we apply the Gaussian quadrature of minimum degree 
for different h - s, this means that we can not use the integrand values calculated 
for one h in the case of another h. Probably the optimum is some compromise. 

It must be emphasized that as the number of auxiliary one-electron integrals 
(2.5) increases with the square of the number of the basic functions, for a high 
number of basic functions this is not likely to be a time-determining step. In 
addition, in calculations in series on similar systems a portion of the integrals (2.5) 
can often be carried from one calculation to the next one. 

b) The solving of the set of Eq. (2.18) (or of analogous equations involving 
also other auxiliary two-particle integrals) is a highly important problem as the 
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number of such equations is equal to the number of integrals. This task becomes, 
however, very easy in the case of two important special types of variational distance 
functions: 

1) when the distance function involves only linear parameters, and 
2) when the distance function involves only linear parameters plus one common 

scale factor. It appears probable that the variational distance functions will either 
�9 be of such types or of types which can by some tricks be handled by similar tools. 

Let us assume, that the variational distance function has the form 

Drz(ris; ao, al, ..., a,) = ~ aiDi(rij ) (a i-= ai(K, L)), (3.2) 
i = 0  

where the functions Di(rH) are given. 
As the Eq. (2.18) are in this case linear with given coefficients, the first idea 

is to calculate and store for once and ever the inverse of the coefficient matrix. 
If, however, we want to calculate only integrals involving a given function of 

ir +3 say, in order to calculate (2.2) with r;s 1) the problem can be further t~IJ ~ IJ , 
simplified. For simplicity we shall consider only the case in which the auxiliary 
two-particle integrals are TKL(2h). A generalization to other cases is straight- 
forward. 

Let us assume, that we want to calculate TKL(m), and let us define the coefficients 
b~. by 

drwDi(r,s) rrs = ~ b~)h S dr,sOi(ris) r, 2h (i = O, 1,..., n). (3.3) 
0 h=O 0 

The coefficients b~)h can also be determined from the set of linear Eq. (3.3) for once 
and ever. 

Let us multiply (3.3) by ai and sum over i. 

~ (=~0 ) ~ ~ ( ~  ) 2h (3.4, drzs aiDi(rlj) r'rs= b~}h drij aiDi(rls) rlj .  
0 i h=O 0 i = 0  

It can immediately be observed, that the left-hand side of (3.4) is just the ap- 

proximation to TrL(m ) we want and the right-hand side is ~, b(~ h TrL(2h ). I.e. 
we have h = 0 

TKL(m)= ~ b~)hTKL(2h). (3.5) 
h=O 

It can also be easily verified, that if the terms D~ involve a common scale 
factor c 

D i "~- D i ( c  r l s ) ,  (3 .6)  

then (3.5) becomes 
TKL(m) = ~ c m- 2h b~)h TKL(2h). (3.7) 

h=O 

Thus the required approximation to TKz(rn) is simply a linear combination of 
the auxiliary two particle integrals. 

The coefficients b~)h have an interesting interpretation that may perhaps be a 

starting point of some error estimate. Namely 1.~(n)t.,mh .2h.ij c a n  b e  c o n s i d e r e d  a s  
h=O 

some kind of approximation to rt~. Test calculations have shown that for not 
extremely small values of n this approximation is often surprizingly good for a 
fairly large interval of r~s. 
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4. Numerical Results 

The method of distance functions has been applied to one- and two-center 
electron-interaction integrals with charge distributions resulting from a Slater- 
type base. In all cases the variational distance function has the form (2.16) with n 
being greater or equal to the value given in connection with Eq. (2.16). This value 
will be referred to as the minimum of n. 

In the case of one-center integrals the convergence has been rapid (also in the 
case CI~ Cs where this variational distance function is not exact) and a 6-7 
decimal digit accuracy has been obtained with n exceeding the minimum value 
by 7. It even did not seem necessary to optimize the scale factor, the choice 
a= MIN(CI, Cs) being sufficiently close to the optimum. 

In the two-center case the results have been less accurate. As an almost general 
rule it turned out that the most "benevolent" problems are the exchange integrals 
and the most "malevolent" problems are the Coulomb ones. This is not surprizing, 
as the variational distance function (2.16) is exact for the one-center "homonuclear" 
case, and the charge distributions of exchange integrals resemble in general more 
to this case than those of the Coulomb integrals. Also this fact emphasizes the 
need for better types of variational distance functions. We hope to be able to 
come back to this problem in a subsequent paper. 

In the two-center case the optimizing of the scale factor is of a greater im- 
portance than in the one-center case. The value a=MIN(Cz, Cs) proved also 
for two-center integrals an often surprizingly good estimate, even at large distances 
of the centers of the orbitals, and could serve at least as a starting value for an 
optimization process. 

The problem of how to optimize the scale factor deserves some more considera- 
tion. The simplest idea is to use one more auxiliary two-electron integral for 
adjusting the scale factor. This is, however, probably not the best way just because 
of the obvious reason that it needs one more auxiliary integral. Another possibility 
is to determine the scale factor from the criterion, that the distance function should 
show a maximum stability under small changes of the scale factor. (The reasons 
for this criterion are obvious.) As, however, we do not calculate explicitly the 
distance function [only the coefficients b~)h defined in (3.3)] as an approximation 
to this criterion we can determine the scale factor from the maximum stability 
of the integral we want to calculate. The numerical experience has so definitely 
pointed out the equivalence of this later criterion and the criterion of determining 
the scale factor from an additional auxiliary integral, that we conjecture that 
there is - at least for variational distance functions of the form (2.16) - a deeper 
reason for this equivalence. 

The criterion of the maximum stability of the distance function (or of the 
integral we approximate) under small changes of the scale factor seems still not 
to be the best practical criterion for determining the scale factor. Namely it turned 
out in all calculations, that for a fairly wide interval of the scale factor the ap- 
proximate value of the integral oscillates around the exact value. Consequently 
some mean value between two adjacent extrema may be a better approximation 
than any of the extrema themselves. As an approximation to this mean value the 
inflexion point of the integral (as a function of the scale factor) between two 
adjacent extrema may be chosen. In an overwhelming part of the numerical 
examples this value has proved definitely better than the maximum stability value. 
The results given in Table 1 have been calculated by the inflexion point criterion. 



258 T. Szondy et al. 

Table 1. Selected values of electron-interaction integrals calculated by the method of distance functions. 
(All data are given in atomic units, assuming normalized basis functions) 

~ d r ~ d r s x ~ A x ~ s  exp( - 2 r ~  - 1 r~s) xa~xss  e x p ( -  3rja - 4rss  ) (EXCHANGE) 

R An  I0  I I  12 116 126 EXACT 

0 .Ik994 ,1541 9 .15345 .15352 .15343 .153~9 
I .15033 .15386 .15318 .15346 .15345 .1534 9 

.15157 ~ .15359 .15355 .15346 .1534 9 

3 ~ ~ ~ .15352 .15346 .1534 9 

4 .15189 .15342 ~ .15351 .15347 .1534 9 

5 .15203 .15342 .15354 .15351 .15348 .1534 9 

0 .09304~-I �9 I0904m-I .I0873~-I .I0845~-I .108191o-I . I08~8m-I 

I .I 03951o-I .I 07~7m-I .I 08501o-I .I 08361o-I .I 0820m-1 .1 08281o-1 

.I0492~-I .I0779~-I .I 0846~-I , I0836~-I .108311o-I .108281o-I 

3 .11~m-I .I 0795~o-I . I 0844m-1 o I 0835~o-1 ~ 0830~o-I .1 08281o-I 
k .II I07m-I .10807m-I �9 I 0843~0-I �9 I08~5~o-I .I 0829~0-1 �9 I08~8~o-I 

5 . t  0950,1o-1 .1 0809,m-1 .1 0821 lO-1 .1 0825.~o-1 ~ 0829.m-1 .1 08~8.io-1 

0 .29676m-4 .I 0880~-4 .I 1 376~-4 .11 k 20~0-4 

I .22074~o-4 .12~73m-4 .11~42m-4 .11462~o-4 

-.068691o-4 . I~01 0~o-4 .11476~o-4 .11484~o-4 

3 �9 0'2 b,- 22 .,o - b.- .11856m-4 .11496m'~ .11559~'4 

4 .04615~-4 ~ 11760~-4 ,I1558~0-4 .1154610-4 

5 .06228~0-~ ~ .11545m-4 .11537m-4 

~ 514~o-4 

.I 50610-4 

.I 511~o-4 

.I 513~-4 

.1 514m-4 

.I 518m-4 

~ d r ~ d r j  e x p ( -  3rAl -- 4r~) zns exp(--  2raj -- I re j) (EXCHANGE) 

�9 115151o-4 

.11515~o-4 

.11515m-4 

.11515~o-4 

,11515~0-4 

.11515m-4 

1 0 .10382 .10872 .10726 .10801 ,10773 .10776 

I I .10537 .10859 ~ ~ .10771 .10776 

I 2 .I0588 ~ .I0778 .I0785 .I0772 .I0776 

I 5 .10815 .10745 .10779 .10785 .10773 .10776 

I 4 .10631 .10751 .I0781 .10784 .I077~ .I0776 

I 5 .10858 ~ ~ .10783 .10774 .I0776 

0 .874991o-2 .826651o-~- .91 076m-~ .841 89m-2 .85805m-~ .8498110"2 

I .984541o-~ .84897m-2 .8~715~-~ .84529~0-2 .85~47~-~ .84981~-2 
2 .95400~o-2 o84717~o-~ ~ .84865~-2 .85293~-2 .84981~-~ 

3 .851 97~o-2 .86585 ~o-~ .84846~-2 .84921 Io-2 .85246~-2 .84981 ~-~ 

.84758~o-P .861731o-2 .84605~e-R ~ .852151o-~ .84981~-~ 
5 .849101o-2 .85178m-~ �9 845 071o-P o85145~o'~ ~ -~- ~ 

4 o 2.04133~o-5 1 .1214&Io-5 2.~28891o-5 .91150m-5 .838841o-5 .838511o-5 
4 I NEGATIVE ,948691o-5 �9 018~6m-5 ,866161o-5 .81081m-5 .83851m-5 
4 2 NEGATIVE ~ .70507m-5 ,85245~-5 .82171~-5 .8385110-5 

4 3 NEGATIVE .68960~o-5 .79689~-5 .807~4~0-5 .8~502~-5 .838511o-5 
4 4 3.5672~o-5 .74~92m-5 .84~08m-5 .825271o-5 .83459m-5 -838511o-5 

4 5 2.68452m-5 .771231o-5 o 86445 ~-5 .82889m-5 �9 839281o-5 ~ 
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Table 1 (continued) 

~drx~drjx~exp(- 3r A~) xa~xsjexp(- 3r aj-4r~j) (HYBRID) 
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R An 10 11 12 11~ 126 EXACT 

I 0 ,17704 ,18212 ,18001 ,18134 ,1819.3 ,18130 

I I ,1774 9 ~ ,18100 ~ ,1819.5 .18130 

1 9 ,17900 ,18175 ,18141 ~ ,1819.7 .18130 

I 3 ,17919 ,1819.9. ,18140 ,18134 ,1819.7 ~ 

I 4 ,17939 ,18168 .18137 ,181~9. ,18128 .18130 

I 5 ,17955 ,18190 ,18135 ,1813R o1819. 9 ,18130 

9. 0 ,1550510-I ,1963510-I ,19579m-I ,19508m-I o1944110-I ,19461~0-I 

I ,184 09.1o-I o I 99.1 01o-I ,195091o-I ,194831o-I ,1944410-I .194611o-I 

9. 2 ,18647~o-I ,192941o-1 ,195071o-I ,19481~0-I o194701o-I ,194611o-I 

9. 3 �9 9.067010 -I ,193651o-I ,1950~-I �9 1947%o-I ~ ,19461~o-I 

2 4 ,9.0353~0-I ,19406~o-I ,19499~-I ,19447m-I ,19465~0-I ,19461~-I 

P 5 ,19910~o-I oI 9408~0-I ,194344o-I ,194504o-I ,I 9464~0-I .19461~-I 

4 o 4o763oI~-4 ,61665~-4 o71574m-4 ,7313940-4 ,758o6~-4 .75642~-4 

4 1 3oO9378~-4 .974854o-4 ,73~46~-4 ,74139~-4 ,759.99~-4 ,75642~-4 

4 2 NEGATIVE -9014~Io-4 .74118m-4 ~ ~ .75649.~-4 

4 3 NEGATIVE ,8585640-4 .78009~-4 ,77176~-4 ~ ,75642~-4 

4 4 NEGATIVE ,83224~o-4 ,77330~-4 ,76758~-4 ~ ,75642~-4 

4 5 NEGATIVE .63005~o-4 .76983~0-4 .764841o-4 .75601~-4 ~ 

~drx~drjexp(-7rA1)z~jexp(--2rAj-lrnj) (HYBRID) 

I o ,55771 ,54111 ,5197o ,53965 ,55oo3 ,5399.7 

I I ,59.906 ,54oi 9 .52632 ~ ~ ~ 

I 2 ,53o73 ,53968 ~ 9 ~ ,53866 ,5399.7 

I 3 ,53386 ,53921 ,59.95o ,53964 ,5388o .5399.7 

I 4 ,536o5 ~ ~ ,53963 ,53899. ,5399.7 

I 5 ,53594 ,53921 ,54009 ,53962 ,539o3 .53927 

2 0 ,52591 ,51714 ,54523 ~ ,51620 .52136 

2 I ,53145 ~ ,53324 ,59.089 ,51764 ,52136 

9. 9 ,53834 ,51745 ,52924 ,59.241 ,599.70 .59.136 

9. 3 ,52182 ,59.765 ,59792 ,59.116 ,59.9.09 .59.136 

2 4 ,52674 ,59.78~ ,52698 ,59.133 ~ ~ 

2 5 ,52029 ,59.030 ~ ,59.136 ,59.189. ~ 

4 0 .1809_5 .17405 

4 I .18950 ~ 

k 2 o18449 .1775~ 

4 3 ,16761 ,17663 

4 4 ,179.43 ,17786 

4 5 ,17475 ~ 

691 o .17967 .17496 .17894 
7oo2 .17943 .18067 .17894 

7851 .17930 ,17905 o 17894 

7799 ,17995 ,17894 .17894 

7779 -17918 ,17855 ,17894 

7835 .1799.0 ,17884 .17894 
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Table 1 (continued) 

Sdr,~drsx~ exp(-3ra,) xZs exp(-  7r~j) (COULOMB) 

R An I0 11 I2 I16 126 EXACT 

I 0 .40780 ~ .42487 .42728 .49687 .4~712 

I I ~ ~ ~ .42729 .42695 ~ 

I 9 ~ ~ ~ ~ .42699 .42712 

1 ~ .4~048 ~ .4~750 ~ .42700 ~ 

I 4 .49927 .49719 .42740 ~ ,4~700 .4~719 

I 5 ~ .42719 ~ ~ .49705 .49719 

0 .07008 .30282 .30985 .99965 .~9947 .99763 
9 1 ~ .97801 ~ .99883 .9987~ .29763 

2 9 ~ ~ ~ 9 ~ ~ .99763 

3 ~ .~9315 ~ .99548 .99801 .99763 

2 4 .36oo6 ~ .29~8~ .99571 .29799 ~ 

2 5 .31944 .99482 ~ .~9703 .99797 .9976~ 

4 0 POSITIVE ~ .09730 .19682 ~ .16901 

4 I POSITIVE .61456 .19340 .95113 .16028 .16901 

4 9 NEGATIVE ~ .95654 o29973 .16309 .16901 

4 3 NEGATIVE ~ .23025 .20657 ~ .16901 

4 4 NEGATIVE NEGATIVE ~ .19684 .17593 .16901 

4 5 NEGATIVE NEGATIVE ~ o1905 9 ~ .16901 

1 0 .1 9448 

1 1 .o712o 
1 9 ~ 
1 ~ ~ 0860 
1 4 ~ 

1 5 .11294 

9 0 NEGATIVE 

2 1 -.45971 ~-1 

2 9 5.547831o-1 

2 3 1.95~36~-I 

9 4 1 ~ 

5 1 o47859~e-1 

4 0 NEGATIVE 

4 I POSITIVE 

4 9 NEGATIVE 

4 3 NEGAT I'VE 

4 ~ NEGATIVE 

4 5 POSITIVE 

Sdr1~drj exp(-7raz ) zBj exp(-3r~s ) (COULOMB) 

,14757 NEGATIVE o15969 .11014 

.I 3614 ,I 9956 .I 3159 .I 1557 

~ 3656 ~ .I 3094 .I 1 927 

.12190 ~ .19917 .19180 

.I 2497 .141 96 .I 2914 .I 2211 

oi 2315 ~ ~ ~ 2257 

12776 

12776 

12776 

19776 

19776 

12776 

NEGATIVE NEGATIVE NEGATIVE NEGATIVE .22505~-I 

POSITIVE POSITIVE 2.15006~-I .541 92~-I .92505~-1 

POSITIVE POSITIVE I. 0~843~-I ~ �9 22505m-I 

NEGATIVE POSITIVE ~ 9~ ~ 

NEGATIVE POSITIVE I . 08563m-I ~ 92030~-I ~ 

NEGATIVE NEGATIVE ~ ,29349~-I ~ 

~ 4~ ~ 9o4961 9m-I o76931m-I 

.55434~-I 5.57471m-I ~ Im-I 1 .5845 I~-I .76931 m-1 

.65 01 3~-I NEGATIVE .611 981o-I I .21701 m-1 .76931 m-1 

o69853~-1 NEGATIVE .75769~-I I .16959m-I .76231~-1 

~ 94920~-I -o42694m-I .764171o-I I �9 19393~-I o76231m-I 

o 239861e-I o 09074~-1 ~ I ~ 08925m-I ~ m-1 
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It may be noted, that the "best" value of the scale factor could be reached in a 
rapidly convergent Newton iteration scheme in general in 3-6 steps starting from 
the value M I N ( C I ,  C j). 

The results listed in Table 1 involve integrals with f ( r~ j )  = r[s 1. Results with 
f ( r1 j )  = r[j  ~ and f ( r i A  = r+s 3 showed a much greater stability than the integrals 
with f(r1j) = r~ ~. This suggest, that their accuracy is higher. (This is by no means 
a surprizing fact.) As, however we had no possibility to calculate the exact values, 
we did not include these data in the Table. 

In the case of the twice pre-manipulated integrals the Dirac-delta-function 
terms discussed in Section 2 have been separated off from the charge distributions, 
the method of distance functions has been applied to the charge distributions 
truncated in this way, and finaly the terms resulting from the Dirac-delta-functions 
have been added to the result. 

Table 1 contains the values of some two-center integrals calculated by the 
method of distance functions. R denotes the distance of the centers called A and B. 
An is the value by which the number of variational parameters in the distance 
function exceeded the minimum value. The symbols I0, I 1 and 12 refer to non 
pre-manipulated, once pre-manipulated and twice pre-manipulated approxima- 
tions, respectively. The symbol 6 indicates that the auxiliary two-electron function 
f(rij) = 6~3)(ria) has also been used (cf. Section 3). 

The notation NEGATIVE and POSITIVE indicates that the approximate 
value of the integral had such a high error that it could not be written down with 
the format applied in the Table. 

It should be noted that the integral involving the 2pz orbital has been the most 
"malevolent" example we have found in our calculations. The other example can 
be considered as being neither "malevolent" nor "benevolent". 

The data given in the Table clearly indicate the disimprovement of accuracy 
with increasing R, due to the "one-center" character of the variational distance 
function. The disimprovement due to the change EXCHANGE~HYBRYD 
--* COULOMB integrals has probably the same reason. 
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